No. of Printed Pages : 3

PJ-273

100217

I Semester M.Sc. Examination, February - 2020 (CBCS-Y2K17/Y2K14 Scheme)

MATHEMATICS

M102T : Real Analysis

Time : 3 Hours

Max. Marks: 70

Instructions : (i) Answer **any five** questions. (ii) All questions carry **equal** marks.

- **1.** (a) Show that $f(x) = -x \in \mathbb{R}[-c, 0]$.
 - (b) If $f \in R[\alpha]$ on [a, b] and P, P* are two partitions of [a, b] such that $P \subset P^*$, then P.T. $L(P, f, \alpha) \leq L(P^*, f, \alpha) \leq U(P^*, f, \alpha) \leq U(P, f, \alpha)$.
 - (c) If $f \in \mathbb{R}[\alpha_1]$ on [a, b] and $f \in \mathbb{R}[\alpha_2]$ on [a, b] then prove that $f \in \mathbb{R}[\alpha_1 + \alpha_2]$ on [a, b].
- **2.** (a) If $f \in \mathbb{R}[\alpha]$ on [a, b] and $c \in \mathbb{R}^+$, then prove that $cf \in \mathbb{R}[\alpha]$ on [a, b]. **4+4+6**
 - (b) Assuming f(x) is monotonic on [a, b] and $\alpha(x)$ is monotonically increasing and continuous function on [a, b], prove that $f \in \mathbb{R}[\alpha]$ on [a, b].
 - (c) Let f be Riemann integrable on [a, b] and let $F(x) = \int_{a}^{x} f(t) dt$, where $a \le x \le b$. Then prove that F is continuous on [a, b]. Further, show that if f(t) is continuous at a point x_0 on [a, b], then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.
- **3.** (a) If $f \in \mathbb{R}[a, b]$ and if there exists a function F on [a, b] such that F' = f, then

4+5+5

prove that
$$\int_{a}^{b} f \, dx = F(b) - F(a)$$
. 5+4+5

(b) If $\lim_{\mu(P)\to 0} S(P, f, \alpha)$ exists then prove that $f \in R[\alpha]$ on [a, b] and that

$$\lim_{\mu(\mathbf{P})\to 0} \mathbf{S}(\mathbf{P}, \mathbf{f}, \alpha) = \int_{\mathbf{a}}^{\mathbf{b}} f \, \mathrm{d}\alpha$$

(c) Define a function of bounded variation. Prove that a function of bounded variation on [a, b] is bounded.

P.T.O.

5+4+5

5+4+5

- 4. (a) State and prove Weierstrauss M-test.
 - (b) Test for uniform convergence for $\left\{\frac{nx}{1+n^2x^2}\right\}$ on [0, 1].
 - (c) Suppose $f_n \rightarrow f$ uniformly on [a, b] and if $x_0 \in [a, b]$ such that $\lim_{x \to x_0} f_n(x) = A_n$, $n = 1, 2, 3, \dots$ then prove that
 - (i) A_n converges
 - (ii) $\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$

5. (a) If $|f_n(x)| < M_n$, $\forall n \in \mathbb{N}$, $\forall x \in [a, b]$ and $\sum_{n=1}^{\infty} M_n$ of positive reals, is convergent,

then prove that $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on [a, b].

(b) Show that $\sum_{n=1}^{\infty} nx e^{-nx^2}$ converges point-wise and not uniformly on [0, 4], k>0.

(c) Let ∑_{n=0} f_n(x) be an infinite series of functions uniformly convergent to f(x) on [a, b] and each f_n(x) ∈ R[a, b] then prove that f(x) ∈ R[a, b].

Also, prove that
$$\int_{a}^{x} \left\{ \sum_{n=1}^{\infty} f_n(t) \right\} dt = \sum_{n=k}^{\infty} \left\{ \int_{a}^{x} f_n(t) dt \right\}.$$

P.J. 285

- 6. (a) If A is a sub-set of R. Then prove that the following statements are 8+6 equivalent.
 - (i) A is closed and bounded
 - (ii) A is compact
 - (iii) A is countably compact
 - (b) Prove that any infinite bounded subset of \mathbf{R}^k has a limit point in \mathbf{R}^k .

7. (a) Let $E \subset \mathbb{R}^n$ be an open set and $f: E \to \mathbb{R}^m$ be a map. Prove that f is continuously differentiable if and only if the partial derivatives $D_j f_i$ exists and are continuous on E for $1 \le i \le m$, $1 \le j \le n$. **6+5+3**

3

- (b) If $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, then prove that $||T|| < \infty$ and T is a uniformly continuous mapping of \mathbb{R}^n onto \mathbb{R}^m .
- (c) Let $f: [a, b] \rightarrow \mathbb{R}^k$, $f=(f_1, f_2, \dots, f_k)$, f is differentiable if and only if each f_i is differentiable.
- 8. State and prove the implicit function theorem.

- 0 0 0 -

14

