I Semester M.Sc. Examination, February - 2020
(CBCS-Y2K17/Y2K14 Scheme)

MATHEMATICS

M102T : Real Analysis

Time: 3 Hours
Max. Marks : 70
Instructions: (i) Answer any five questions.
(ii) All questions carry equal marks.

1. (a) Show that $f(x)=-x \in \mathrm{R}[-\mathrm{c}, 0]$. 4+5+5
(b) If $f \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{P}, \mathrm{P}^{*}$ are two partitions of $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{P} \subset \mathrm{P}^{*}$, then P.T. $\mathrm{L}(\mathrm{P}, f, \alpha) \leq \mathrm{L}\left(\mathrm{P}^{*}, f, \alpha\right) \leq \mathrm{U}\left(\mathrm{P}^{*}, f, \alpha\right) \leq \mathrm{U}(\mathrm{P}, f, \alpha)$.
(c) If $f \in \mathrm{R}\left[\alpha_{1}\right]$ on $[\mathrm{a}, \mathrm{b}]$ and $f \in \mathrm{R}\left[\alpha_{2}\right]$ on $[\mathrm{a}, \mathrm{b}]$ then prove that $f \in \mathrm{R}\left[\alpha_{1}+\alpha_{2}\right]$ on [a, b].
2. (a) If $f \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{c} \in \mathrm{R}^{+}$, then prove that $\mathrm{c} f \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$. 4+4+6
(b) Assuming $f(x)$ is monotonic on [a, b] and $\alpha(x)$ is monotonically increasing and continuous function on $[\mathrm{a}, \mathrm{b}]$, prove that $f \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$.
(c) Let f be Riemann integrable on [a, b] and let $\mathrm{F}(x)=\int_{\mathrm{a}}^{x} f(\mathrm{t}) \mathrm{dt}$, where $\mathrm{a} \leq x \leq \mathrm{b}$. Then prove that F is continuous on $[\mathrm{a}, \mathrm{b}]$. Further, show that if $f(\mathrm{t})$ is continuous at a point x_{0} on [a, b], then F is differentiable at x_{0} and $\mathrm{F}^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
3. (a) If $f \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ and if there exists a function F on $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{F}^{\prime}=f$, then prove that $\int_{\mathrm{a}}^{\mathrm{b}} f \mathrm{~d} x=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$.
$5+4+5$
(b) If $\operatorname{lt}_{\mu(\mathrm{P}) \rightarrow 0} \mathrm{~S}(\mathrm{P}, \mathrm{f}, \alpha)$ exists then prove that $f \in \mathrm{R}[\alpha]$ on $[\mathrm{a}, \mathrm{b}]$ and that $\operatorname{lt}_{\mu(\mathrm{P}) \rightarrow 0} \mathrm{~S}(\mathrm{P}, \mathrm{f}, \alpha)=\int_{\mathrm{a}}^{\mathrm{b}} f \mathrm{~d} \alpha$
(c) Define a function of bounded variation. Prove that a function of bounded variation on $[\mathrm{a}, \mathrm{b}]$ is bounded.
4. (al) Stare and prove Weierstrauss M-test.
(b) Test for uniform convergence for $\left\{\frac{\mathrm{n} x}{1+\mathrm{n}^{2} x^{2}}\right\}$ on $[0,1]$.
(c) Suppose $f_{\mathrm{n}} \rightarrow f$ uniformly on [a, b] and if $x_{0} \in[\mathrm{a}, \mathrm{b}]$ such that $\lim _{x \rightarrow x_{0}} f_{\mathrm{n}}(x)=\mathrm{A}_{\mathrm{n}}, \mathrm{n}=1,2,3, \ldots \ldots$. then prove that
(i) A_{n} converges
(ii) $\lim _{x \rightarrow x_{0}}$ lt $_{\mathrm{n} \rightarrow \infty} f_{\mathrm{n}}(x)=\operatorname{lt}_{\mathrm{n} \rightarrow \infty} \lim _{x \rightarrow x_{0}} f_{\mathrm{n}}(x)$
5. (a) If $\left|f_{\mathrm{n}}(x)\right|<\mathrm{M}_{\mathrm{n}}, \forall n \in \mathrm{~N}, \forall x \in[\mathrm{a}, \mathrm{b}]$ and $\sum_{\mathrm{n}=1}^{\infty} \mathrm{M}_{\mathrm{n}}$ of positive reals, is convergent, $5+4+5$ then prove that $\sum_{\mathrm{n}=1}^{\infty} f_{\mathrm{n}}(x)$ is uniformly convergent on $[\mathrm{a}, \mathrm{b}]$.
(b) Show that $\sum_{\mathrm{n}=1}^{\infty} \mathrm{n} x \mathrm{e}^{-\mathrm{n} x^{2}}$ converges point-wise and not uniformly on $[0,4], \mathrm{k}>0$.
(c) Let $\sum_{\mathrm{n}=0}^{\infty} f_{\mathrm{n}}(x)$ be an infinite series of functions uniformly convergent to $f(x)$ on $[\mathrm{a}, \mathrm{b}]$ and each $f_{\mathrm{n}}(x) \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ then prove that $f(x) \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$.

Also, prove that $\int_{a}^{x}\left\{\sum_{n=1}^{\infty} f_{n}(t)\right\} d t=\sum_{n=k}^{\infty}\left\{\int_{a}^{x} f_{n}(t) d t\right\}$.
6. (a) If A is a sub-set of R. Then prove that the following statements are $8+6$ equivalent.
(i) A is closed and bounded
(ii) A is compact
(iii) A is countably compact
(b) Prove that any infinite bounded subset of \mathbf{R}^{k} has a limit point in \mathbf{R}^{k}.
7. (a) Let $\mathrm{E} \subset \mathbf{R}^{\mathrm{n}}$ be an open set and $f: \mathrm{E} \rightarrow \mathbf{R}^{\mathrm{m}}$ be a map. Prove that f is continuously differentiable if and only if the partial derivatives $\mathrm{D}_{j} f_{i}$ exists and are continuous on E for $1 \leq i \leq \mathrm{m}, 1 \leq j \leq \mathrm{n}$.
(b) If $\mathrm{T} \in \mathrm{L}\left(\mathbf{R}^{\mathrm{n}}, \mathbf{R}^{\mathrm{m}}\right)$, then prove that $\|\mathrm{T}\|<\infty$ and T is a uniformly continuous mapping of \mathbf{R}^{n} onto \mathbf{R}^{m}.
(c) Let $f:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}^{\mathrm{k}}, f=\left(f_{1}, f_{2}, \ldots \ldots ., f_{\mathrm{k}}\right), f$ is differentiable if and only if each f_{i} is differentiable.
8. State and prove the implicit function theorem.

